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NMR can probe the microstructures of anisotropic materials such as liquid crystals, stretched polymers
and biological tissues through measurement of the diffusion propagator, where internal structures are
indicated by restricted diffusion. Multi-dimensional measurements can probe the microscopic anisot-
ropy, but full sampling can then quickly become prohibitively time consuming. However, for incom-
pletely sampled data, compressed sensing is an effective reconstruction technique to enable
accelerated acquisition. We demonstrate that with a compressed sensing scheme, one can greatly reduce
the sampling and the experimental time with minimal effect on the reconstruction of the diffusion prop-
agator with an example of anisotropic diffusion. We compare full sampling down to 64� sub-sampling
for the 2D propagator measurement and reduce the acquisition time for the 3D experiment by a factor
of 32 from �80 days to �2.5 days.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Measuring the directional dependence of diffusion with NMR is
a useful tool to characterize the complicated internal microstruc-
ture for many anisotropic materials, such as liquid crystals [1–3],
ordered polymer structures [4], stretched polymer electrolytes
[5], nanostructured materials [6,7], and biological tissues [8,9]
and may help further resolve the NMR spectra of such mixtures
with DOSY [10,11] as well. Diffusion tensor measurements only re-
quire few independent encodings, a minimum of six along different
directions, and provide only a simple model (diffusion tensor) for
anisotropic diffusion. However, it is well known [12] that this mod-
el may lack the angular resolution necessary to identify more com-
plex structures, like fiber crossings in biological networks, due to
the underlying Gaussian assumption. For diffusive motion, the
Gaussian approximation breaks down as the diffusion length ap-
proaches the size on any confining structures [12]. For non-biolog-
ical porous media applications, such as characterizing the pore
structure of rocks, this can often be the case as pore sizes can span
orders of magnitude.

Variations from non-Gaussian diffusive behavior has motivated
a variety of different NMR encoding and reconstruction schemes
such as low q scattering experiments [13], q-ball [14] and kurtosis
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), hjcho@unist.ac.kr (H. Cho),
ong).
imaging [15]. Common to these approaches, is that they are model-
dependent, relying on the highly regular structure of the diffusion
propagator, fitting to a targeted basis such as spherical harmonics
or performing something along the lines of a cumulant analysis
[16]. However, these are not always extendable to the wider range
of propagator measurements, for instance in the presence of flow
[17] or in propagator–propagator exchange experiments [18]. Fur-
thermore, in certain rare pathological systems, such as well or-
dered bead packs [19], resonance effects can still be observed
corresponding to pore exchange that some of these newer se-
quences aim to produce for a wider range of materials.

Alternatively, inverting for the model, free diffusion propagator
[20] yields the probability distribution P(Dx,Dt) of displacement
Dx of the fluid’s individual molecules for one or multiple travel
times Dt. Deviations from free diffusion and the shape of the prop-
agator yields information about the microscopic structure as these
restrict diffusive motion without any additional assumptions
placed on the diffusion process. Multidimensional versions of these
measurements, looking at the directionality of the diffusion prop-
agator [21] are necessary to yield details of the microscopic anisot-
ropy, and the generality of the full propagator inversion allows it to
be applied to a wider variety of these experiments.

While multidimensional measurements are necessary to fully
probe the anisotropy of the microstructure from the propagator,
they greatly increase the sampling requirements for full recon-
struction and hence experiment time. For example, a fully sampled
3D, high-resolution (e.g. 128 � 128 � 128, for 128 samples along
each dimension) propagator measurement with a 3s repetition
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time would lead to a �80 day experiment time. The resulting long
experiment times pose a major limitation to the application of
multidimensional diffusion propagator techniques.

Compressed Sensing (CS), has become an effective tool in NMR
and MRI for accelerating data acquisition, and it is a general meth-
od for a wide range of applications where signal processing is in-
volved in data reconstruction [22]. Following the notational
conventions presented in [23], the problem is to reconstruct some
vector m, in this case describing the full diffusion propagator, from
the subsampled data vector y (our signal in q-space), which are re-
lated by some linear operator Fu (the subsampled Fourier opera-
tor). However, as the collected data is subsampled, strictly
speaking, there are many solutions for m that are technically con-
sistent with the observation y. To resolve this ambiguity, CS can be
described as reconstructing from subsampled data by optimizing
for the reconstruction’s sparsity under some predetermined linear
compressive transformation, W. [22] This is achieved by minimiz-
ing the l1-norm, defined as kxk1 ¼

P
ijxij, of the compressed recon-

struction [23–25] that is consistent with the acquired data. In
comparison, a least-squares fit or equivalently an l2-minimization
would discourage sparse solutions, as it disproportionately penal-
izes coefficients with large values in favor or reconstructions with
their intensity spread out over multiple coefficients. Thus, in the
presence of noise [26], the optimization for a CS reconstruction
can be summarized as [23]:

min kWmk1 s:t: kFum� yk2 < e:

As most spectra and images are compressible under some trans-
formation, W [23], for instance total variation, wavelet or curvelet,
and the technique is not specific to a particular reconstruction
transform (Fourier, Hadamard, etc.), CS is very general and can
potentially be applied to a wide variety of detection and encoding
schemes. It only requires that the transform is linear and, to de-
scribe it qualitatively, a subset of data samples can incoherently
cover the reconstruction. The concept behind CS, l1-minimization
of a sparse spectra for subsampled reconstruction is well docu-
mented, for example in Donoho et al. [27], but its more recent pop-
ularity has been due to the development of the supporting theory
[25,26] placing bounds on the sampling requirements (random/
incoherent), sparsity and appropriate reconstruction and compres-
sion transforms which are introduced in greater detail in Candes
and Wakin [22]. Its application to accelerating NMR and MRI
started with its initial demonstration by Lustig et al. for MRI imag-
ing [23]. Compressed sensing, as a general reconstruction tech-
nique, can just as well be applied to multidimensional
propagator measurements with NMR. Here, CS has already been
shown to be able to accurately extract angular dependence [28],
but not for the larger propagator datasets necessary for high prop-
agator resolution experiments that should furthermore allow for
higher subsampling ratios [23,29].
Fig. 1. The pulsed gradient stimulated echo experiment (PGSE). An initial 90� RF-
pulse excites the spins and a gradient pulse encodes for position. A second 90� pulse
stores the magnetization and to allow for a longer diffusion time during which a
gradient pulse spoils any remaining transverse magnetization. The final 90� pulse
places the magnetization back into the transverse plane to generate a stimulated
echo. Here a final gradient pulse matched in length and amplitude to the first
effectively decodes the position leaving only the residual encoding due to motion
within the stimulated echo’s signal.
Diffusion propagators are typically measured using a pair of
magnetic field gradient pulses with equal but opposite amplitude
separated by a time Dt (see Fig. 1) [30,31]. If the molecules do
not diffuse during this time, then the effects of the gradients can-
cel. Any displacement of spins is encoded in this experiment as a
phase proportional to the applied gradient [20]. Thus Fourier trans-
form of the signal as a function of the gradient will determine the
diffusion propagator in a fashion analogous to the Fourier encoding
in NMR spectroscopy or MR imaging, except that the measurement
now corresponds to displacement instead of chemical shift or posi-
tion. Hence, the identical approach to sampling (random weighted
towards low encoding values) and reconstruction (wavelet com-
pression) as for CS reconstruction of images may be applied [23].

For this application, the Gaussian distribution serves to ensure a
sampling bias towards small q-space values, while still collecting
enough data at large ones. Biasing towards low encoding values
better ensures good signal to noise, but must be balanced against
maintaining sampling incoherence and the need to collect a suffi-
cient number of the larger q-values to reconstruct the propagator’s
details. Even with an ‘optimal’ distribution, multiple random in-
stances of it can still have a greatly varied effect [29] and the reader
is referenced to [23,29] for details as to their ‘optimization.’ These
approaches are inexact and to the author’s knowledge the theoret-
ical optimal sampling for CS where the signal is noisy and consis-
tently biased has yet to be presented.

The other design variable for a CS implementation is the com-
pression transform. The very regular nature of the propagator rel-
ative to most MR images, should lead to higher compression ratios
for fewer sparse coefficients and hence lower sampling require-
ments [23,25]. Nonetheless, our selection of wavelet compression
in comparison to a transform targeted to the structure of the diffu-
sion propagator, for instance spherical harmonics, will likely offer
sub-optimal compression. However, the wavelet transform has sig-
nificantly greater generality and would be applicable to other types
of propagator measurements for the characterization of porous
media such as flow [32] or propagator correlation [18] techniques.
The purpose of this study is to evaluate the ability of CS to recon-
struct propagator measurements, with the simplest multidimen-
sional type, the anisotropic diffusion propagator.
2. Results and discussion

A sample of asparagus stalk was used as a simple homogeneous
anisotropic material to test the CS reconstruction of the propagator
measurements. It is known that the bundles of elongated cells are
aligned along the stalk and that there is significant diffusion
restriction perpendicular to its axis. For this sample, a fully sam-
pled 256 � 256 2D (Fig. 2) and a 32� subsampled
128 � 128 � 128 3D propagator (Fig. 3) were acquired at a
2.8 lm resolution. Subsampling for the 2D propagator was ob-
tained by reconstructing from subsets of the fully sampled
256 � 256 dataset. Both the full 2D and 3D acquisitions took
�2.5 days.

The 2D propagators obtained from the full 2D dataset and the
subsampled datasets are shown in Fig. 2. There is significantly
more diffusional displacement along the stalk (Dz) than perpendic-
ular to its axis (Dx,Dy) as clearly shown by the narrowing of the
propagator along the Dy-axis. This is a reflection of the homoge-
neous and anisotropic nature of the sample’s microstructure. The
cells are elongated and their walls restrict motion resulting in
anisotropic diffusion with greater motion along the cell length.
As the sample is macroscopically homogeneous, in that the cells
are in bundles all aligned along the stalk’s axis, this anisotropic
motion is observed in the propagator of the bulk sample.
With the subsampling of the 2D measurement, little apparent



Fig. 2. The 2D propagator reconstructed from fully sampled data and with
increasing degrees of subsampling (8�, 16�, 32� and 64�) with CS, shown for a
quarter of the total range of displacements encoded for the the propagator,
179.2 lm (of 716.8 lm), with contours at 15%, 28%, 42%, 55%, 69%, 82%, and 96% of
maximum signal. An image of the wavelet compressed reconstruction is shown
adjacent to the fully sampled data. Its l1-norm is minimized within the CS
reconstruction and is sparse as required. The sub-sampling tables indicate the
points in q-space (the complex Fourier transform of the propagator) that PGSE
experiment would collect, and are shown adjacent to their respective reconstruc-
tions. As the sequence also relied on the gradient encoding for coherence selection,
the small black dots at the plot’s centers reflect the center q-space points that then
had to be omitted due to inadequate gradient strength.

Fig. 3. CS reconstruction of the 3D diffusion propagator (128 � 128 � 128)
subsampled by 32� showing preferential diffusion along the asparagus stalk (z).
The surface plot (set at 33% max. signal intensity) shows the angular dependence of
diffusion while the contour plots (15%, 28%, 42%, 55%, 69%, 82%, and 96% max.
signal) of the center slices of the three planes detail its structure.
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degradation in the reconstructed propagator occurs as seen in the
reconstructions of the full to 64� subsampled data (Fig. 2). The
sampling schemes, shown adjacent to the corresponding recon-
structions for the 2D reconstructions, are randomly sampled with
a Gaussian weighting focused on the center to approximately cor-
respond to the expected signal distribution. While surprisingly few
samples are required, the number of sparse coefficients for them to
support is quite small (nearly unnoticeable) as shown in the com-
pressed wavelet domain plotted adjacent to the fully sampled
propagator in Fig. 2. Quantitatively, within the 2D reconstructions,
the deviation of the propagator is within 1–4% of the peak intensity
(Fig. 4), worse for the greatest degree of subsampling (64�) and
most apparent along the ‘x-axis’, the 2nd dimension of the acquisi-
tion where spectrometer instabilities (such as imperfections in
adjusting for frequency drift) would be the greatest.

The 3D propagator for the sample again shows (Fig. 3) greater
diffusion along the stalk’s axis (Dz) than perpendicular to it
(Dx,Dy). As the plants cells are both elongated and uniformly
aligned along the z axis and the sample is isotropic within the
xy-plane, the diffusion propagator appears circular (Fig. 3) within
this slice. The xz- and yz-planes of the 3D diffusion propagator
(Fig. 3) are qualitatively similar to the 2D diffusion propagator
(Fig. 2) and clearly show a widened distribution along the stalk’s
axis. However, they differ quantitatively, as the 2D propagator is
a projection of this 3D dataset, integrating over the Dy-axis. For a
quantitative comparison, the 3D data is projected (summed) into
the xz-plane and plotted against the 2D reconstructions along the
primary axes (Fig. 4). The reconstruction has systematic errors on
the order of �5% of the maximum intensity away from the fully
sampled 2D propagator. Given the superior performance of 64�
subsampling for the 2D propagator, these systematic errors are
mostly attributable to the acquisition. With 32� subsampling,
the 3D acquisition still lasts the same time as the fully sampled
2D experiment for the same degree of drift, but only obtains partial
data. Acquiring at the same resolution with half the number of
points per dimension furthermore results in a lower density of
small gradient encoded samples, where the signal is concentrated,
and both result in lower signal to noise. All of these factors would
make the 3D data more sensitive to errors in the acquisition.
Fig. 4. The propagator (left) and the difference to the fully sampled data (right)
along the lines Dz = 0 (top) and Dx = 0 (bottom). These directly compare the CS
reconstructions for the 2D propagator under varying degrees of subsampling and
with respect to the 3D propagator after projection onto the 2D plane.
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The performance of CS is quite good for our 2D and 3D data, and
even for very high subsampling ratios (64�). This is mainly due to
the very simple and compressible nature of the diffusion propaga-
tor, so that it can be adequately described with very few sparse
coefficients and hence requires correspondingly few samples to
reconstruct [16,18,19]. However, as indicated by greater increases
in error with subsampling along the slowly acquired dimension, CS
reconstruction further sensitizes the results to experimental drift
and imperfections in the sequence. Unlike pure random noise,
the ‘signal’ from systematic errors can compress under transforma-
tion, but differently from the propagator, and may bias the CS
reconstruction which simply optimizes for an l1 measure of com-
pression. Furthermore, these corruptions of the signal can reduce
the sparsity of the acquired data and hence increase the number
of necessary samples to accurately represent it. Nonetheless, CS
was still quite effective at reconstructing the propagator given suf-
ficient diligence to minimize and correct experimental artifacts be-
fore CS reconstruction. For their identification and mitigation, we
reference the reader to Price’s review on the topic [33].
3. Conclusions

This work demonstrates that Compressed Sensing (CS) allows
for substantial subsampling (32� and 64�) of real experimental
propagator data. As a general reconstruction technique, CS recon-
struction could be applied to the wide variety of flow and propaga-
tor data lacking the structure and symmetry found in the diffusion
propagator measurements that we obtained here. The disadvan-
tage of this generality for measuring diffusion propagators in par-
ticular, is that then places far weaker priors on the reconstruction
and should not necessarily have better performance than existing
techniques that address the typically minor deviations from non-
Gaussian behavior. Our results, though tested with a particular
pulse sequence, PGSE, are general to any other implementation
that yields Fourier encoding of the diffusion propagator, for in-
stance DOSY for NMR spectroscopy, or Difftrain [34], single-scan
2D [35] and MMME [36,37] for even further accelerated measure-
ments through the acquisition of multiple diffusion times or multi-
ple encodings per scan. In addition to the use of other pulse
sequences, further improvements in sampling and reconstruction
are possible, as the compression (Wavelet) and sampling (random
Gaussian) used are based from existing work on image reconstruc-
tion and have not been tailored to the diffusion propagator. For dif-
fusion propagator measurements in particular, compression with a
targeted basis such as spherical polar Fourier [28], and a sampling
scheme target to its structure, further improvements in perfor-
mance and reconstruction fidelity should be possible. Thus, in con-
junction with careful experimental setup, our 2.5 day 3D
propagator measurement may potentially be reduced to hours.
Similarly, flow and correlation propagator experiments should be
able to experience similar acceleration factors.
4. Experimental

The propagator was measured using a standard pulsed field gra-
dient stimulated echo experiment (PGSE) sequence [13] on a Bru-
ker 600 MHz vertical narrow bore spectrometer with a 100 G/cm
gradient system and a Helmholtz RF coil (2.8 cm long, 1 cm inner
diameter). A stimulated echo experiment was selected so to max-
imize the available diffusion time by making T1 instead of T2 or T�2
as its limiting factor. The sequence was implemented with 26 ls RF
excitation and refocusing pulses and two separate 8 ms long
encoding gradient pulses incremented together with identical
amplitudes up to a maximum of 51.2 G/cm and separated by a
460 ms delay. For both the fully sampled two-dimensional and
sub-sampled three-dimensional propagator measurements
65,536 (256 � 256 and 32� subsampled 128 � 128 � 128) inde-
pendent q-space encodings were collected both at a 2.8 lm propa-
gator resolution for 716.8 lm and 358.4 lm ranges of resolved
displacements respectively.

The sampling tables were randomly generated with a Gaussian
weighting as detailed in prior work [29] and discussed previously
in the introduction. Instead of phase-cycling, the sequence only
collected a single scan and used the encoding magnetic field gradi-
ents for coherence selection in addition to encoding, so the omis-
sion of data from very low-gradient amplitude samples was
necessary to avoid signal arising from T1 relaxation during the dif-
fusion time. Since only a small number of adjacent points at the
center of q-space were removed, this did not significantly affect
the ‘incoherence’ of the sampling, nor was the available signal sig-
nificantly reduced since the vast majority of small q-space compo-
nents were still retained. However, greatly enlarging this omitted
region would ruin the signal-to-noise, and, because of a loss of
sampling ‘incoherence’, make it difficult for CS to resolve ‘low fre-
quency’ structures generating baseline like errors [29].

Before CS reconstruction, the complex echo amplitudes were
extracted by integration of the water peak after Fourier transfor-
mation of the collected time domain signal apodized by an expo-
nential decay. Due to spectrometer frequency drift and a lack of
a deuterium lock signal, the frequency drift was adjusted in post-
processing by moving the center of the integration window accord-
ing to the 1st moment of the absolute value spectrum of the near-
est sample in experiment time with sufficient SNR to accurately
determine peak position. The CS reconstruction, consisting of the
constrained l1-minimization stated in the introduction, was imple-
mented in Matlab incorporating the libraries spgl1 [38] for the l1-
optimizer and Wavelab [39] for the fast wavelet transform for
compression and originates from prior work [29]. The noise level,
e, for the reconstruction was set to a fraction of the estimated
noise, obtained from the signal of a subset of strong gradient en-
coded points after subtracting the 1st order polynomial fit of their
values.
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